首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14187篇
  免费   1198篇
  国内免费   1篇
  2023年   147篇
  2022年   95篇
  2021年   220篇
  2020年   210篇
  2019年   213篇
  2018年   573篇
  2017年   474篇
  2016年   514篇
  2015年   417篇
  2014年   439篇
  2013年   805篇
  2012年   1128篇
  2011年   1292篇
  2010年   671篇
  2009年   442篇
  2008年   962篇
  2007年   873篇
  2006年   860篇
  2005年   654篇
  2004年   684篇
  2003年   637篇
  2002年   568篇
  2001年   412篇
  2000年   531篇
  1999年   260篇
  1998年   138篇
  1997年   100篇
  1996年   94篇
  1995年   82篇
  1994年   77篇
  1993年   76篇
  1992年   76篇
  1991年   67篇
  1990年   41篇
  1989年   34篇
  1988年   35篇
  1987年   38篇
  1986年   19篇
  1985年   43篇
  1984年   31篇
  1983年   28篇
  1982年   33篇
  1981年   26篇
  1980年   24篇
  1979年   28篇
  1978年   23篇
  1977年   22篇
  1975年   15篇
  1974年   25篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
101.
Two DNA fragments, AP-1 and AP-2, encoding amino acid sequences closely related to Ser/Thr protein phosphatases were amplified from Arabidopsis thaliana genomic DNA. Fragment AP-1 was used to screen. A. thaliana cDNA libraries and several positive clones were isolated. Clones EP8a and EP14a were sequenced and found to encode almost identical proteins (97% identity). Both proteins are 306 amino acids in length and are very similar (79–80% identity) to the mammalian isotypes of the catalytic subunit of protein phosphatase 2A. Therefore, they have been designated PP2A-1 and PP2A-2. A third cDNA clone, EP7, was isolated and sequenced. The polypeptide encoded (308 amino acids, lacking the initial Met codon) is 80% identical with human phosphatases 2A and was named PP2A-3. The PP2A-3 protein is extremely similar (95% identity) to the predicted protein from a cDNA clone previously found in Brassica napus. Southern blot analysis of genomic DNA using AP-1 and AP-2 probes, as well as probes derived from clones EP7, EP8a and EP14a strongly indicates that at least 6 genes closely related to type 2A phosphatases are present in the genome of A. thaliana. Northern blot analysis using the same set of probes demonstrates that, at the seedling stage, the mRNA levels for PP2A-1, PP2A-3 and the gene containing the AP-1 sequence are much higher than those of PP2A-2 and AP-2. These results demonstrate that a multiplicity of type 2A phosphatases might be differentially expressed in higher plants.  相似文献   
102.
When the immobilized cells are employed in packed-bed bioreactors several problems appear. To overcome these drawbacks, a new bioreactor based on the use of pulsed systems was developed [1]. In this work, we study the glucose fermentation by immobilized Saccharomyces cerevisiae in a packed-bed bioreactor. A comparative study was then carried out for continuous fermentation in two packed-bed bioreactors, one of them with pulsed flow. The determination of the axial dispersion coefficients indicates that by introducing the pulsation, the hydraulic behaviour is closer to the plug flow model. In both cases, the residence time tested varied from 0.8 to 2.6 h. A higher ethanol concentration and productivity (increases up to 16%) were achieved with the pulsated reactors. The volumes occupied by the CO2 were 5.22% and 9.45% for fermentation with/without pulsation respectively. An activity test of the particles from the different sections revealed that the concentration and viability of bioparticles from the two bioreactors are similar. From the results we conclude that the improvements of the process are attributable to a mechanical effect rather than to physiological changes of microorganisms.List of Symbols D m2/s dispersion coefficient - K is l/g inhibition substrate constant - K ip l/g inhibition ethanol constant - K s g/l Apparent affinity constant - P g/l ethanol concentration - q p g/(gh) specific ethanol productivity - Q p g/(lh) overall ethanol productivity - q s g/(gh) specific glucose consumption rate - Q s g/(lh) glucose consumption rate - S g/l residual glucose concentration - S(in0) g/l initial glucose concentration - V max g/(lh) maximum rate - Y p/s g/g yield in product  相似文献   
103.
Light and electron microscope observations characterized the layers that comprise Vigna vexillata L. pollen walls, and identified the timing of their development. Exine sculpturings form an unusually coarse ektexinous reticulum. The structure of the ektexine is granular; this differs from the columellate/tectate type of structure typical of most angiosperm pollen. The ektexine overlies a homogeneous-to-lamellar, electron-dense endexine, which in turn surrounds a thick, microfibrillar intine. Pollen grains are triporate and operculate, with Zwischenkörper and thickened intine underlying the apertures. The ektexine forms during the tetrad period of microspore development, the endexine and Zwischenkörper during the free microspore stage, and the intine during the bicelled (pollen) stage. Coarsely reticulate exine sculpturings and the granular structure of the patterned exine wall of the pollen grains are features that make this species suitable for detailed studies of pollen wall pattern formation.  相似文献   
104.
Sixty Triticum tauschii (Aegilops squarrosa, 2n=2x=14, DD) accessions were evaluated for the variability of high-molecular-weight (HMW) glutenins, gliadins and isozymes of seed esterase, -amylase and glucose-phosphate isomerase. Wide variability was observed for HMW-glutenins and gliadins. The implications of unique HMW-glutenin alleles for quality parameters are discussed. Isozyme evaluations indicated more variability for the Est-D t 5 locus as compared to the Est-D5 of bread-wheat. The polymorphism for -Amy-D t 1 was less than that of -Amy-D1. Similar to the bread-wheat situation, Gpi-D t 1 showed no polymorphism. The variability observed with the traits evaluated can be readily observed in T. turgidum x T. tauschii synthetic hexaploids (2n=6x=42, AABBDD) suggesting that T. tauschii accessions may be a rich source for enhancing the genetic variability of T. aestivum cultivars.  相似文献   
105.
Transfer of resistance toHeterodera avenae, the cereal cyst nematode (CCN), by a stepping-stone procedure from the wild grassAegilops ventricosa to hexaploid wheat has been demonstrated. The number of nematodes per plant was lower, and reached a plateau much earlier, in the resistant introgression line H93-8 (1–2 nematodes per plant) than in the recipient H10-15 wheat (14–16 nematodes per plant). Necrosis (hypersensitive reaction) near the nematode, little cell fusion, and few, often degraded syncytia were observed in infested H93-8 roots, while abundant, well-formed syncytia were present in the susceptible H10-15 wheat. Line H93-8 was highly resistant to the two Spanish populations tested, as well as the four French races (Fr1-Fr4), and the British pathotype Hall, but was susceptible to the Swedish pathotypes HgI and HgIII. Resistance was inherited as though determined by a single quasi-dominant factor in the F2 generations resulting from crosses of H93-8 with H10-15 and with Loros, a resistant wheat carrying the geneCre1 (syn.Ccn1). The resistance gene in H93-8 (Cre2 orCcn2) is not allelic with respect to that in Loros. RFLPs and other markers, together with the cytogenetical evidence, indicate that theCre2 gene has been integrated into a wheat chromosome without affecting its meiotic pairing ability. Introduction ofCre2 by backcrossing into a commercial wheat backgroud increases grain yield when under challenge by the nematode and is not detrimental in the absence of infestation.  相似文献   
106.
Journal of Physiology and Biochemistry - We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells....  相似文献   
107.
Evaluating the potential climatic suitability for premium wine production is crucial for adaptation planning in Europe. While new wine regions may emerge out of the traditional boundaries, most of the present-day renowned winemaking regions may be threatened by climate change. Here, we analyse the future evolution of the geography of wine production over Europe, through the definition of a novel climatic suitability indicator, which is calculated over the projected grapevine phenological phases to account for their possible contractions under global warming. Our approach consists in coupling six different de-biased downscaled climate projections under two different scenarios of global warming with four phenological models for different grapevine varieties. The resulting suitability indicator is based on fuzzy logic and is calculated over three main components measuring (i) the timing of the fruit physiological maturity, (ii) the risk of water stress and (iii) the risk of pests and diseases. The results demonstrate that the level of global warming largely determines the distribution of future wine regions. For a global temperature increase limited to 2°C above the pre-industrial level, the suitable areas over the traditional regions are reduced by about 4%/°C rise, while for higher levels of global warming, the rate of this loss increases up to 17%/°C. This is compensated by a gradual emergence of new wine regions out of the traditional boundaries. Moreover, we show that reallocating better-suited grapevine varieties to warmer conditions may be a viable adaptation measure to cope with the projected suitability loss over the traditional regions. However, the effectiveness of this strategy appears to decrease as the level of global warming increases. Overall, these findings suggest the existence of a safe limit below 2°C of global warming for the European winemaking sector, while adaptation might become far more challenging beyond this threshold.  相似文献   
108.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   
109.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
110.
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号